Mechatronics Engineering Undergraduate Program (B.S)

Mechanical Engineering and Electrical and Electronics Engineering departments jointly run the Mechatronics Engineering Program, both Mechanical Engineering and Electrical and Electronics Engineering are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.. Program graduates are equipped with an ability to apply knowledge of mathematics, science and engineering principles, an ability to design and conduct experiments as well as to analyze and interpret data, an ability to design a component, system or process to meet an objective, an ability to function on multidisciplinary teams, an ability to identify, formulate, and solve engineering problems, an understanding of professional and ethical responsibilities, and global issues related to engineering, an ability to communicate effectively, the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context and a knowledge of contemporary issues. Graduating students as modern, inquisitive and creative engineers is another goal of the program.

General Information

The Mechatronics Engineering undergraduate program aims to satisfy the academic goals as set by the Faculty of Engineering that applies to all its departments. Consistent with these goals, the educational objectives of the program can be stated as follows: Provide a firm foundation in mathematics, engineering and basic sciences as required by the engineering discipline. Provide a selection of interdisciplinary and general education courses that will enhance students’ understanding of the economic, environmental, ethical, political, societal, and cultural impact of their engineering solutions and/or decisions. Provide the essential tools and fundamental background of the disciplines of Mechatronics Engineering. Encourage self-learning, life-long learning, and help develop a strong sense of responsibility. Provide students with a satisfactory level of competence in the analysis and solution of engineering problems. Provide students the opportunities to work in a team, either as a member or as a team leader. Prepare the graduates for the industry or postgraduate studies.

Education

The Mechatronics Engineering undergraduate program aims to satisfy the academic goals as set by the Faculty of Engineering that applies to all its departments. Consistent with these goals, the educational objectives of the program can be stated as follows: Provide a firm foundation in mathematics, engineering and basic sciences as required by the engineering discipline. Provide a selection of interdisciplinary and general education courses that will enhance students’ understanding of the economic, environmental, ethical, political, societal, and cultural impact of their engineering solutions and/or decisions. Provide the essential tools and fundamental background of the disciplines of Mechatronics Engineering. Encourage self-learning, life-long learning, and help develop a strong sense of responsibility. Provide students with a satisfactory level of competence in the analysis and solution of engineering problems. Provide students the opportunities to work in a team, either as a member or as a team leader. Prepare the graduates for the industry or postgraduate studies.

Facilities

Students studying the program are offered high tech laboratories and modern seminar rooms and classrooms. Laboratories operating under the Electrical and Electronic Engineering and Mechanical Engineering departments are also offered to Mechatronic Engineering undergraduate program students. CADCAM, computer, dynamics, automotive and Autocad laboratories are available for teaching, projects and research, and they closely integrate the processes associated with design, manufacturing, and robotics. Apart from an academic advisor for each student, lab assistants are available to assist students. Along with the university library, students may benefit from libraries housed by Mechanical Engineering and Electrical and Electronic Engineering Departments.

Career Opportunities

The graduates can select from a wide spectrum of industries for career choices. They can find jobs as mechatronics specialists and also may contribute in variety of roles including project planner, product designer, design engineer, software engineer and so forth. Machine and tool design and production, biomedical and medicine technology, energy production, mining and agriculture are only a few of the areas mechatronics engineers can pursue employment opportunities.

Contact

Tel: +90 392 630 1210
Fax: +90 392 365 3715
E-mail: medept@emu.edu.tr
Web: http://me.emu.edu.tr

* You can contact the department and / or faculty for detailed information about elective courses.

Semester 1

Credit: 3 | Lecture Hour (hrs/week): 2 | Lab (hrs/week): - | Tutorial (hrs/week): 3 | ECTS: 8
Principles of engineering graphics with the emphasis on laboratory use of AUTOCAD software. Plane Geometry, geometrical constructions, joining of arcs, Dimensioning principles, principles of orthographic projection, isometric and oblique drawing, principles of sectioning, reading engineering drawing from blueprints.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 8
High-level programming environments. Variables, expressions and assignments. Introducing C programming. Structured programming; sequential, selective and repetitive structures. Function definition and function calls. Prototypes and header files. Recursive functions. Arrays and pointers. Dynamic memory management. Parameter passing conventions. Multi dimensional arrays. Structures and unions. Conditional compilation, modular programming and multi-file programs. Exception handling. File processing. Formatted I/O. Random file access. Index structures and file organization.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 5
ENGL191 is a first-semester freshman academic English course. It is designed to help students improve the level of their English to B1+ level, as specified in the Common European Framework of Reference for Languages. The course connects critical thinking with language skills and incorporates learning technologies such as IQ Online. The purpose of the course is to consolidate students’ knowledge and awareness of academic discourse, language structures, and lexis. The main focus will be on the development of productive (writing and speaking) and receptive (reading) skills in academic settings.
Credit: 3 | Lecture Hour (hrs/week): 5 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 5
ENGL 181 is a first-semester freshman academic English course. It is designed to help students improve the level of their English to B1+ level, as specified in the Common European Framework of Reference for Languages. The course connects critical thinking with language skills and incorporates learning technologies such as IQ Online. The purpose of the course is to consolidate students’ knowledge and awareness of academic discourse, language structures, and lexis. The main focus will be on the development of productive (writing and speaking) and receptive (reading) skills in academic settings.

Calculus - I (MATH151)

Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): 1 | Tutorial (hrs/week): - | ECTS: 6
Limits and continuity. Derivatives. Rules of differentiation. Higher order derivatives. Chain rule. Related rates. Rolle's and the mean value theorem. Critical Points. Asymptotes. Curve sketching. Integrals. Fundamental Theorem. Techniques of integration. Definite integrals. Application to geometry and science. Indeterminate forms. L'Hospital's Rule. Improper integrals. Infinite series. Geometric series. Power series. Taylor series and binomial series.

Physics - I (PHYS101)

Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Physical quantities and units. Vector calculus. Kinematics of motion. Newton`s laws of motion and their applications. Work-energy theorem. Impulse and momentum. Rotational kinematics and dynamics. Static equilibrium.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 5
Set theory, functions and relations; introduction to set theory, functions and relations, inductive proofs and recursive definitions. Combinatorics; basic counting rules, permutations, combinations, allocation problems, selection problems, the pigeonhole principle, the principle of inclusion and exclusion. Generating functions; ordinary generating functions and their applications. Recurrence relations; homogeneous recurrence relations, inhomogeneous recurrence relations, recurrence relations and generating functions, analysis of algorithms. Propositional calculus and boolean algebra; basic boolean functions, digital logic gates, minterm and maxterm expansions, the basic theorems of boolean algebra, simplifying boolean function with karnaugh maps. Graphs and trees; adjacency matrices, incidence matrices, eulerian graphs, hamiltonian graphs, colored graphs, planar graphs, spanning trees, minimal spanning trees, Prim's algorithm, shortest path problems, Dijkstra's algorithms .

Semester 2

Credit: 1 | Lecture Hour (hrs/week): 1 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 3
This course aims to familiarize first year mechanical engineering students by introducing them to the fundamentals of discipline; job opportunities for mechanical engineers; basic study skills; an overview of fundamentals laws and principles of mechanical engineering; introduction to problem layout and problem solving methods; simplified engineering modeling and analysis of mechanical systems; collection, manipulation and presentation of engineering data; ethical issues; and the importance of computers and language skills for effective communication.

General Chemistry (CHEM101)

Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Atoms, molecules and ions; Mass relations in chemistry, stoichiometry; Gasses, the ideal gas law, partial pressures, mole fractions, kinetic theory of gases; Electronic structure and the periodic table; Thermo chemistry, calorimetry, enthalpy, the first law of thermodynamics; Liquids and Solids; Solutions; Acids and Bases; Organic Chemistry.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): 1 | Tutorial (hrs/week): - | ECTS: 4
ENGL192 is a second-semester freshman academic English course. It is designed to help students improve the level of their English to B2 level, as specified in the Common European Framework of Reference for Languages. The course connects critical thinking with language skills and incorporates learning technologies such as IQ Online. The purpose of the course is to consolidate students’ knowledge and awareness of academic discourse, language structures, and lexis. The main focus will be on the development of productive (writing and speaking) and receptive (reading) skills in academic settings.
Credit: 3 | Lecture Hour (hrs/week): 5 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 4
ENGL182 is a second-semester freshman academic English course. It is designed to help students improve the level of their English to B2 level, as specified in the Common European Framework of Reference for Languages (CEFR). The course connects critical thinking with language skills and incorporates learning technologies such as IQ Online. The purpose of the course is to consolidate students’ knowledge and awareness of academic discourse, language structures, and lexis. The main focus will be on the development of productive (writing and speaking) and receptive (reading) skills in academic settings.

Calculus - II (MATH152)

Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Vectors in R3. Lines and Planes. Functions of several variables. Limit and continuity. Partial differentiation. Chain rule. Tangent plane. Critical Points. Global and local extrema. Lagrange multipliers. Directional derivative. Gradient, Divergence and Curl. Multiple integrals with applications. Triple integrals with applications. Triple integral in cylindrical and spherical coordinates. Line, surface and volume integrals. Independence of path. Green's Theorem. Conservative vector fields. Divergence Theorem. Stokes' Theorem.

Physics - II (PHYS102)

Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Kinetic theory of ideal gases. Equipartition of energy. Heat, heat transfer and heat conduction. Laws of thermodynamics, applications to engine cycles. Coulombs law and electrostatic fields. Gauss's law. Electric potential. Magnetic field. Amperes law. Faradays law.

Atatürk İlkeleri ve İnkilap Tarihi (HIST280)

Credit: 2 | Lecture Hour (hrs/week): 2 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 2

Turkish as a Second Language (TUSL181)

Credit: 2 | Lecture Hour (hrs/week): 2 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 2

Semester 3

Credit: 2 | Lecture Hour (hrs/week): 1 | Lab (hrs/week): - | Tutorial (hrs/week): 3 | ECTS: 3
This is to be conducted in the Mechanical Engineering Department's workshops by all Mechanical Engineering students who have completed a minimum of three semesters in the program. Students will perform various hand and machine tool operations under staff supervision. It includes introduction to engineering materials, and selected practices on laying-out and setting out a job, using measuring devices. At the end of the training students will be required to complete a report regarding their training.

Material Science (MENG286)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Crystal structure and crystal geometry phase diagrams of alloy systems, heat treatments applied to metallic materials and plain-carbon steels. Mechanical properties of metals stress-strain in metals, tensile test, hardness and hardness testing, fatigue and fracture of metals, impact test, creep of metals and creep test. Strengthening and plastic deformation of metals. Mechanical properties of ceramics, glasses, polymers and composites. Corrosion of metals. Material selection based on mechanical properties.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Circuit variables and circuit elements. Some circuit simplification techniques. Techniques of circuit analysis. The operational amplifiers. The natural and step response of RL and RC circuits. Natural and step responses of RLC circuits. Sinusoidal steady-state analysis. Introduction to the Laplace Transform. The Laplace Transform in circuit analysis.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 5
Structures and unions. Storage structures and memory allocations. Primitive data structures. Data abstraction and Abstract Data Types. Array and record structures. Sorting algorithms and quick sort. Linear & binary search. Complexity of algorithms. String processing. Stacks & queues; stack operations, implementation of recursion, polish notation and arithmetic expressions. Queues and implementation methods. Dequeues & priority queues. Linked storage representation and linked-lists. Doubly linked lists and circular lists. Binary trees. Tree traversal algorithms. Tree searching. General trees. Graphs; terminology, operations on graphs and traversing algorithms.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): 1 | Tutorial (hrs/week): - | ECTS: 6
Review of vector algebra. Principle of mechanics. Static equilibrium of particles and rigid bodies. Distributed force systems. Elements of structures, beam, trusses, cables. Friction. Review of particle dynamics, force, energy and momentum methods. Planar kinematics and kinetics of rigid bodies. Energy methods.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Systems of linear equations, Echelon forms. Matrix Algebra, Determinants, and Inverse matrices. Vector spaces, Linear transformations, Eigenvalue problems. First-order differential equations; Second - order differential equations; General results of First-order linear systems, Laplace transforms.

Semester 4

Electronics (INFE242)

Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Semiconductor devices, basic amplifier concepts, diodes, P-N junction diodes, Schottky diodes, Bipolar Junction Transistors (BJTs), Field-Effect Transistors: MOSFETs, JFETs, transistor biasing.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Definition of stress, strain. Hook's law. Constitutive relations for uniaxial stresses. Shearing stress and strain. Torsion of circular members. Thin walled pressure vessels. Relations between bending moment, shearing force and distributed loads. Bending of beams with symmetrical sections. Bending of composite beams.

University Elective - I (UE01)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 3
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 6
Continuous-time and discrete-time signals and systems. Linear time-invariant (LTI) systems: system properties, convolution sum and the convolution integral representation, system properties, LTI systems described by differential and difference equations. Fourier series: Representation of periodic continuous-time and discrete-time signals and filtering. Continuous time Fourier transform and its properties: Time and frequency shifting, conjugation, differentiation and integration, scaling, convolution, and the Parseval`s relation. Representation of aperiodic signals and the Discrete-time Fourier transform. Properties of the discrete-time Fourier transform.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 4
ENGL 201 is a Communication Skills course for students at the Faculty of Engineering. The course aims to introduce a range of skills, including effective written and oral communication, research skills and study skills. Throughout the course the students will be involved in project work intended to help them in their immediate and future academic and professional life. This will include library research, technical report writing and an oral presentation. By investigating a topic of their own choice, students will develop their understanding of independent research skills. During the report writing process, students will improve their writing and develop the ability to produce organized, cohesive work. The oral presentation aims to enhance spoken fluency and accuracy and provide training in the components of a good presentation.

Semester 5

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Basic applied concepts in mechatronic components and instruments. Mechatronic components, systems, instrumentation, transducers and sensors. Cognitive systems.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 5
Basic concepts and definitions of thermodynamics. Properties of pure substances. The first law of thermodynamics for the closed and open systems. The second law of thermodynamics. Entropy as a property. Brayton cycle (gas power cycle). Rankine cycle (steam power cycle). Refrigeration cycles.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
Fundamentals and principles of major manufacturing processes: casting, bulk deformation, sheet metalworking, powder metallurgy. Processing of polymers, ceramics, glass, rubber and composites. Metal cutting: cutting conditions, forces, temperatures, tool life, surface finish, coolants. Cutting tool materials. Principles, tools and process capabilities of basic machining operations: turning, milling, drilling, planning, shaping, boring, broaching. Gear manufacturing. Abrasive operations: grinding, finishing operations. Non-traditional processes. Basics of joining and assembling. Fusion and solid-state welding. Essentials of computer numerical control.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 7
Mechanical vibrations: 2-D.O.F. vibrating systems, vibration measuring instruments, numerical methods for multi-degree of freedom systems, Dunkerley's equations, vibration of continuous systems, random vibrations. Balancing of machinery: rigid rotors, reciprocating machines, flywheels, planar linkages, balancing machines and instrumentation. Cam dynamics, gyroscope and governors
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 7
Variables and functions. Boolean algebra and truth tables. Logic gates, Karnaugh maps. Incompletely specified functions, Multilevel logic circuits. Tabular minimization. Number representation. Arithmetic circuits. Binary codes. Programmable logic devices. Multiplexers, decoders and encoders. Synchronous sequential circuits, flip-flops, synchronous counters.

Semester 6

Machine Elements (MECT375)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 6
The course covers fundamentals of machine design which include: general design rules, load analysis, materials selection, stress, strain and deflection anal mechatronics components, sensors, instrumentation analysis, failure theories, the concepts of reliability and safety, tolerances and fits; and introduces design guidelines, mathematical models and equations for: fasteners and power screws, springs, bearings, gears, shafts, clutches and brakes, and chain drives. Students will have an opportunity to work on a design project using learned knowledge.

Principles of CAE (MENG303)

Credit: 3 | Lecture Hour (hrs/week): 2 | Lab (hrs/week): - | Tutorial (hrs/week): 3 | ECTS: 6
Integration of computers into the design cycle. Interactive computer modeling and analysis. Geometrical modeling with wire frame, surface, and solid models. Finite element modeling and analysis. Curves and surfaces and CAD/CAM data exchange. The integration of CAD, CAE and CAM systems.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 7
Introduction to control: open-loop and closed loop control. Modeling: transfer function, block diagram, signal flow graph, state equations. Feedback control system characteristics: sensitivity, disturbance rejection, steady-state error. Performance specifications: second-order system, dominant roots, steady-state error of feedback systems. Stability: Routh-Hurwitz criterion, relative stability. The root-locus method, Bode diagram, Nyquist stability criterion, gain margin and phase margin, Nichols chart.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 7
Basic computer organization and introductory microprocessor architecture. Introduction to assembly language programming: basic instructions, program segments, registers and memory. Control transfer instructions; arithmetic, logic instructions; rotate instructions and bitwise operations in assembly language. Basic computer architecture: pin definitions and supporting chips. Memory and memory interfacing. Basic I/O and device interfacing: I/O programming in assembly and programmable peripheral interface (PPI). Interfacing the parallel and serial ports.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 5
Numerical error. Solution of nonlinear equations, and linear systems of equations. Interpolation and extrapolation. Curve fitting. Numerical differentiation and integration. Numerical solution of ordinary differential equations.

Semester 7

Credit: - | Lecture Hour (hrs/week): - | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 3
This is a period comprising a minimum of 40 days' training to be completed in an industrial organization by all students who are effectively in their junior or senior year. Students should obtain approval of the Department before commencing training. Following this training, students will be required to write a formal report and give a short presentation before a committee regarding their training.

Introduction to Capstone Design (MECT410)

Credit: 1 | Lecture Hour (hrs/week): 1 | Lab (hrs/week): 1 | Tutorial (hrs/week): - | ECTS: 4

Area Elective I (AE01)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 7

Area Elective II (AE02)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 7
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 5
An introduction to the basics of economic analysis for decisions in engineering design, in manufacturing, in manufacturing equipment, and in industrial projects. Time value of money. Cash-flow analysis. Cost of capital. Return on investment. Elements of cost and cost estimation. Break-even analysis. Decision making among alternatives. Effects of depreciation. Taxes. Replacement analysis. Inflation.
Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 5
Introduction to probability and statistics. Operations on sets. Counting problems. Conditional probability and total probability formula, Bayes' theorem. Introduction to random variables, density and distribution functions. Expectation, variance and covariance. Basic distributions. Joint density and distribution function. Descriptive statistics. Estimation of parameters, maximum likelihood estimator. Hypothesis testing.

Semester 8

Credit: 3 | Lecture Hour (hrs/week): 1 | Lab (hrs/week): - | Tutorial (hrs/week): 4 | ECTS: 7
The purpose of the course is to develop an understanding of independent research through the study of a particular Mechatronics Engineering topic of interest. The special project is an exercise in the professional application of specialist skills and experience developed in Mechatronics Engineering program. Research topics, which may be principally experimental, theoretical or applied, will be chosen in consultation with a project supervisor.
Credit: 4 | Lecture Hour (hrs/week): 4 | Lab (hrs/week): - | Tutorial (hrs/week): 1 | ECTS: 4
Components of robot systems; coordinate frames, homogeneous transformations, kinematics for manipulator, inverse kinematics; manipulator dynamics, Jacobians: velocities and static forces, control of manipulator and robotic programming.

Area Elective III (AE03)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 7

University Elective - II (UE02)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 4

University Elecitive - III (UE03)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: 3

. (MECT001)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: -

. (MECT002)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: -

. (MECT003)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: -

. (MECT004)

Credit: 3 | Lecture Hour (hrs/week): 3 | Lab (hrs/week): - | Tutorial (hrs/week): - | ECTS: -
Mechatronics-Engineering